Sr. Editor:

La osteopoiquilosis es una enfermedad ósea poco frecuente, asintomática y que suele diagnosticarse de forma accidental al realizarse una radiografía. Presentamos a continuación el caso de un varón de 19 años que en relación a un esguince se hizo una radiografía de ambas piernas donde se encontró un patrón de lesiones osteoescleróticas bilaterales y simétricas características de esta enfermedad.

Varón de 19 años, sin antecedentes personales ni familiares de interés, que acude por dolor e inflamación en el tobillo derecho tras una entorsión espontánea. En la exploración física destaca la existencia de signos inflamatorios e impotencia funcional, con dolor a la movilización en el tobillo derecho, sin hematoma.

Se realizó una radiografía del tobillo en proyección posteroanterior que descarto fracturas, pero se objetivaron zonas de aumento de densidad radiológica, ovoides y bien definidas, de pequeño diámetro (2–4 mm), en la zona epifisaria distal de tibia y perone. Para confirmar la sospecha diagnóstica se realiza una radiografía anteroposterior de ambas piernas donde se ven las lesiones simétricas que afectan a las epífisis tanto proximal como distal de ambos huesos (fig. 1).

Tras el hallazgo de la imagen radiológica característica de osteopoiquilosis, se reinterrogo al paciente sobre posibles patologías óseas en su familia y la respuesta fue negativa. La exploración detallada de la piel en busca de lesiones fue negativa. No se realizó ninguna otra prueba de imagen (ni gammagrafía ósea ni RMN).

La osteopoiquilia u osteopoiquilosis es una displasia osteoesclerótica, de etiología inespecífica. Es más frecuente en hombres y se han descrito casos familiares, con herencia autosómica dominante1,2. Hasta en un 25% de los casos pueden aparecer lesiones cutáneas acompañantes; denominándose entonces síndrome de Buschke-Ollendorff u osteodermatopoiquilosis3. Las alteraciones en la piel son en forma de pápulas de color blanco amarillento, redondeadas u ovaladas, localizadas en la región lumbar, los glúteos, los brazos y los muslos, con cierta simetría, que histológicamente corresponden a infiltraciones fibroclálgicas y que son similares a las que aparecen en la esclerodermia4.

Clínicamente, es asintomática y no produce deformidad ni alteración en el desarrollo normal óseo por lo que el diagnóstico suele ser un hallazgo radiológico5,6, focos de esclerosis ósea redondeados u ovoides, rara vez mayores de 10 mm, simétricos, bien definidos, sin afectación de la cortical ósea y con predilección por las epífisis y las metáfisis de los huesos tubulares, carpos, tarsos, pelvis y omoócto. Hay, por tanto, una afectación poliostótica (varios huesos) y politópica (distintas partes del hueso)7.

La anatomía patológica se caracteriza por la existencia de focos ovales de hueso compacto, localizados a nivel de la esponjosa, que son indistinguibles de las exostosis solitarias (islotes óseos). El diagnóstico diferencial debe realizarse con metástasis osteoblasticas, en especial cuando no es simétrica o cuando aparece en pacientes por encima de los 40-50 años8, con esclerosis tuberosa y con mastocitosis8. La gammagrafía ósea normal descarta en estos casos la presencia de metástasis óseas.

Bibliografía

Figura 1.
What is the importance of nutrition in rheumatoid arthritis?
¿Cuál es la importancia de la nutrición en la artritis reumatoide?

Sr. Editor

Historically, nutritional therapy for rheumatoid arthritis (RA) has been very appreciated by the medical community. Moreover, it has always been a topic of great interest to patients. It follows from this that medical practitioners need information on how best to respond the patients' questions about what they should be eating in an attempt to control RA.

RA and musculoskeletal disorders are among the most common medical disorders. This disease is characterized by a chronic inflammation of the synovial tissue leading to cartilage and bone damage. Several environmental factors have been recognized as increasing the risk of developing RA and emerging scientific evidence supports the relationship between nutrition and RA. For instance, a consistent prospective, double-blind, and randomized trial found that olive oil supplementation was associated with lower risk of RA.\(^1\) Besides, well-designed and meta-analysis studies suggest that patients with RA should consume 3–6 g of omega 3 fatty acids (n-3) daily throughout ≥ 12 weeks. After taking n-3 supplements for this period, patients have reported reduction in joint pain intensity and in non-steroidal anti-inflammatory drugs dose.\(^2,3\) Recently, Dawczynski et al\(^4\) in a randomized, double-blind, placebo-controlled and cross-over study showed that the effects of dairy products moderately supplemented with n-3 have not improved the RA activity. However, the long-term consumption of dairy products acts against the cartilage and bone destruction in RA.

Concerning other nutrients, a population-based prospective study revealed that the daily intake of one glass of orange juice (containing β-cryptoxanthin, a potent anti-inflammatory component of the diet) is associated with lower risk of developing RA.\(^5\) In line with this, other prospective cohort study with more than 29,000 women showed that the high intake of β-cryptoxanthin, zinc supplements and diets rich in fruits and cruciferous vegetables may also be protective against RA.\(^6\) Broadly speaking, McCann\(^7\) summarized that the nutritional therapy for RA should include anti-inflammatory nutrients (minimum amount of meat and plenty of fish, whole grains, fruits, and vegetables). However, in the same year, Benito-García

![Fig. 1. The possible effects of some components of the diet on the prevention and treatment of rheumatoid arthritis.](image-url)

Benefic effects related to increased consumption
- n-3 fatty acids, orange juice, β-cryptoxanthin, fruits, vegetables. Mediterranean-type diet, vitamin D. olive oil, cooked vegetables, zinc supplements, gingersol, chirayita, bromelin, tumeric, green tea and dairy products
- α-tocopherol, β-caroteno, selenium, resvetarol, borage oil (starflower), soy isoflavone, cherry, and RvCSd

Probable benefic effects
- COX-2 TNF-α, IL-1β, IL-6, IL-8
- 5-LOX LT-4
- Anti-inflammatory actions
- ↓ Pain
- ↑ IL-10
- Improve live quality
- ↓ NSAID requirement

Does the consumption should be reduced?
- meat red, coffee, and iron

\(^3\) Pedro Gargantilla Madera\(^a\), Emilio Pintor Holguín\(^b\)* y Benjamín Herreros Ruiz-Valdepeñas\(^b\)

\(^a\) Servicio de Medicina Interna, Hospital de El Escorial, Madrid, España

\(^b\) Departamento de Especialidades Médicas, Universidad Europea de Madrid, Madrid, España

*Autor para correspondencia.
Correo electrónico: emilio.pintor@uem.es (E. Pintor Holguín).