Brief report

Discriminant Validity Study of Ultrasound Achilles Enthesis

María Rosa Expósito Molinero, a, *, Eugenio de Miguel Mendieta b

a Sección de Reumatología, Hospital Comarcal de Laredo, Cantabria, Spain
b Servicio de Reumatología, Hospital La Paz, Madrid, Spain

A R T I C L E I N F O

Article history:
Received 14 March 2015
Accepted 19 August 2015
Available online 16 June 2016

Keywords:
Ultrasound
Achilles’ tendon
Spondyloarthritis
Rheumatoid arthritis
Gouty arthritis
Chondrocalcinosis
Osteoarthritis

A B S T R A C T

Objective: We want to know if the ultrasound examination of the Achilles tendon in spondyloarthritis is different compared to other rheumatic diseases.

Materials and methods: We studied 97 patients divided into five groups: rheumatoid arthritis, spondyloarthritis, gout, chondrocalcinosis and osteoarthritis, exploring six elementary lesions in 194 Achilles entheses examined.

Results: In our study the total index ultrasonographic Achilles is higher in spondyloarthritis with significant differences. The worst elementary spondyloarthritides lesions for discriminations against other pathologies were calcification.

Conclusions: This study aims to demonstrate the discriminant validity of Achilles enthesis observed by ultrasound in spondyloarthritis compared with other rheumatic diseases that may also have ultrasound abnormalities such enthesis level.

© 2015 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

Introduction

Enthesitis is the most characteristic condition in spondyloarthritides (SpA). In their article, “The enthesis organ concept and its relevance to the spondyloarthropathies”, 1 Michael Benjaman and Dennis Mcgonagall propose this concept and use it to explain their understanding of this “organ”. It is thought to have a biomechanical basis that, in a context of genetic predisposition, triggers an autoinflammatory process that causes the disease affecting the enthesal fibrocartilage. 2-4 The enthesis organ concept provides an explanation for the connection among bursitis, synovitis and enthesitis. 5,6 The Achilles tendon has been considered an example of an enthesis organ.

On the other hand, ultrasound is a highly valuable tool in the diagnosis and assessment of the activity of inflammatory diseases.

© 2015 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. Todos los derechos reservados.
Several studies have validated ultrasound for the evaluation of enthesis.

The ultrasound index of Balint et al. (the Glasgow Ultrasound Enthesis Scoring System [GUES]) rates the Achilles tendon, plantar tendon, distal and proximal patellar ligaments and quadriceps tendon. The Sonographic Enthesis Index of Alcalde et al. examines the same enthesis, but distinguishes between acute and chronic lesions. D'Agostino et al. introduced Doppler imaging to assess activity. Hamdi et al. correlated the Maastricht Ankylosing Spondylitis Enthesis Score (MASES for ultrasound) and a Doppler score with the visual analog scale (VAS) for pain, the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), the Bath Ankylosing Spondylitis Functional Index (BASFI), and the Ankylosing Spondylitis Quality of Life (ASQoL) instrument. Chronic ultrasound lesions did not correlate with any parameter.

In their study, De Miguel et al. used the Madrid Sonography Enthesis Index (MASEI) to explore 6 enthesis (the 5 mentioned above and a triceps tendon) and 6 variables (including Doppler signal) associated with the elementary lesions. They reported a sensitivity of 83.3% and a specificity of 82.8%. This may be the most sensitive method for evaluating inflammatory lesions and structural damage.

Evaluation of the discriminant validity of enthesis ultrasound has been limited to studies involving mechanical processes, healthy processes and SpA and, in some cases, rheumatoid arthritis (RA) (De Miguel et al.; D’Agostino et al.). However, until now, it has not been studied in other enthesopathies, like the micrormalline diseases, which also affect the entheses.

Thus, the main objective of this study is to compare the discriminant validity of enthesis ultrasound in different models of rheumatic diseases.

On the other hand, the assessment of several enthesis is too time-consuming to be easily carried out in routine practice; therefore, to improve the feasibility of this study of the discriminant power of ultrasound, we have focused on the Achilles enthesis, as it is the most representative example of these structures.

Materials and Methods

We performed a cross-sectional, observational, analytical study consisting of 5 arms. The study population was formed by the systematic consecutive recruitment of the first 3 patients to come to a hospital rheumatology department for examination of the lesions to be studied between September and November 2012, provided they consented to being enrolled. They were paired by sex and age. The study was approved by the hospital ethics committees. In addition to demographic data and the Disease Activity Score in 28 joints (DAS28) for each patient, we recorded the BASDAI and VAS corresponding to the enthesis examined.

Each patient underwent ultrasound of the Achilles tendon. The sonographer was blind to the patient’s clinical and diagnostic data. Ninety-seven patients (194 Achilles tendons) were examined and, according to the criteria they met for each disease, were included in 1 of 5 groups: AR (n = 20), SpA (n = 21), gout (n = 17), chondrocalcinosis (CC; n = 15) and osteoarthritis (OA; n = 24).

Ultrasound Examination

The activity and structural damage were assessed by means of the ultrasound examination of 6 elementary lesions of the Achilles tendon. For this purpose, the sonographer underwent training in enthesis ultrasound and a rotation in the unit in which the MASEI had been created, achieving a good overall reliability, according to the kappa statistic and intraclass correlation coefficient.

The findings were scored according to the MASEI for the assessment of the elementary lesions:

- Calcifications: none = 0; < 5 mm = 1; 5–10 mm = 2, and ossification > 10 mm = 3.
- Structure and thickness were scored as 0 when absent and 1 when present.
- Bursa: present (> 2 mm) = 1 and absent (< 2 mm) = 0.
- Erosions and Doppler signal: absent = 0 and present = 3.

We used a Logiq 5 ultrasound system from General Electric Healthcare, with a 12-MHz linear probe for gray scale images and a 6.6-MHz probe for power Doppler, with a 29-dB gain and a pulse repetition frequency of 0.4 kHz.

Statistical Analysis

Analysis of variance (ANOVA) was performed to compare the ultrasound findings in the different subgroups. The values are expressed as the mean ± standard deviation.

For the quantitative comparison between SpA and the other diseases, we used Student’s t test for independent samples.

Results

Demographic Data

Of the 97 patients, 49 were men (50.51%) and 48, women (49.48%) (Table 1). The mean age was 55.1 ± 9.94 years. There were age-related differences in the numbers of patients with gout, CC and OA, as these diseases develop in older patients.

The mean DAS28 was 3.3 in patients with RA and the BASDAI was 2.93 in those with SpA. The mean VAS score for the entheses was 1.4/10, being ≥ 2 in the patients with SpA and gout, 1.55 in those with RA and < 1 in those with OA and CC.

Ultrasound Findings

The highest score on the ultrasound index corresponded to SpA and the lowest to OA. Table 2 shows the scores for the different elementary lesions.

The findings in SpA were compared with those recorded for each of the other 4 groups (Table 2).

1. Spondyloarthritis vs RA: The overall ultrasound values and the value for retrocalcaneal bursitis were significantly higher in SpA. There were no significant differences in calcifications, structure,
thickening or Doppler signal. The difference in the values for erosions nearly reached statistical significance.

2. Spondyloarthropathy vs gout: The only significant difference was recorded for erosions, which were more common in RA.

3. Spondyloarthropathy vs CC: The values for structure, thickness, erosions, bursitis, and Doppler signal were significantly higher in SpA, as was the overall ultrasound score. The value for calcifications was higher in CC, although the difference did not reach statistical significance.

4. Spondyloarthropathy vs OA: The values were significantly higher in SpA, with the exception of calcifications.

Discussion

Until now, there had been no real discriminant validity studies of entheses ultrasound; the studies had been limited to isolated reports involving healthy individuals or inflammatory diseases like RA. However, the entheses are frequently affected in microcrystalline diseases and in long-standing OA. In this respect, our study is original as it demonstrates, for the first time, the power of certain elementary lesions to discriminate among different diseases, and especially that of the MASEI score for Achilles enthesis, as compared to different models of rheumatic disease (autoimmune, degenerative and microcrystalline); this index only lacks discriminant validity in the evaluation of gout, although the score is also lower in the latter case.

We find it interesting that calcifications in the enthesis have no discriminant value, and that they are even slightly more intense in microcrystalline diseases. The presence of a Doppler signal was greater in SpA, but the difference was significant only with respect to CC and OA. Erosions are the most specific lesions for the diagnosis of SpA, showing significant differences with respect to all of the other diseases studied, with the exception of RA. On the other hand, retrocalcaneal bursitis was also more common in SpA, significantly more so than in RA, CC and OA.

A limitation to the study is the more advanced age of patients with microcrystalline diseases (gout and CC), a bias that is difficult to correct because these diseases develop at later ages. However, if this bias were to exist, it would be reflected in a greater frequency of calcific lesions, which would increase their overall incidence and, thus, their power as discriminating factors with respect to SpA. Thus, we consider that the discriminant validity is maintained. On the other hand, the inclusion of only elderly patients with inflammatory diseases would create a selection bias that would reduce the validity of the study, since the differential diagnosis is most important in the initial phases. Another limitation is the failure to carry out a collective study of the images or assess inter-reader agreement, although the criteria and measurements were standardized in the training received by the sonographers.

In conclusion, we present the first study using ultrasound in an enthesis to assess its value in discriminating among different diseases. We found that the incidences of some lesions, such as erosions and bursae, and the presence of Doppler signals differ significantly depending on the underlying disease. The MASEI in Achilles tendons shows a potential ability to discriminate between SpA and the other diseases studied, with the exception of gout. These findings should lead to further studies to confirm the discriminatory power of enthesis ultrasound.

Ethical Disclosures

Protection of human and animal subjects. The authors declare that no experiments were performed on humans or animals for this study.

Confidentiality of data. The authors declare that they have followed the protocols of their work center on the publication of patient data.

Right to privacy and informed consent. The authors declare that no patient data appear in this article.

Conflicts of Interest

The authors declare they have no conflicts of interest.

Acknowledgments

We wish to thank the members of the nursing staff of the rheumatology department for their help and our patients for their generous collaboration in the study.

References