Publish in this journal
Journal Information
Vol. 6. Issue 4.
Pages 217-223 (July - August 2010)
Share
Share
Download PDF
More article options
Vol. 6. Issue 4.
Pages 217-223 (July - August 2010)
Full text access
Osteoporosis in young individuals
Osteoporosis en individuos jóvenes
Visits
...
Pilar Peris Bernal
Servicio de Reumatología, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract

Although there are some differential aspects related to peak bone mass acquisition and later bone loss throughout life between genders, the frequency of osteoporosis in young individuals is similar for both genders. In addition, in this population group, the development of osteoporosis is frequently associated with secondary causes. Indeed, nearly 50% of young individuals with osteoporosis have diseases or therapies related to the development of this disorder, with glucocorticoid therapy being one of the most frequently associated conditions. There are several other processes, which have also been associated with such a disorder in these individuals, but the causes differ between genders. In addition, idiopathic osteoporosis is also a frequent condition in these patients. In this subgroup of patients, a family history of osteoporosis or hypercalciuria is also a frequently associated finding. Because of that, in order to rule out secondary causes of osteoporosis, the laboratory studies performed to these patients should be extensive. Although there is few data on the treatment of these patients, basic rules such as exercise, correct calcium and vitamin D consumption, and avoiding alcohol and tobacco consumption should be advised. Drug therapy will depend on the cause of osteoporosis. However, it should be taken into account that most young women are of childbearing age, so drug therapy in these patients should be evaluated cautiously

Keywords:
Osteoporosis
Young adults
Fractures
Premenopausal osteoporosis
Osteopenia
Resumen

Aunque existen aspectos diferenciales relacionados con la adquisición del pico de masa ósea y la pérdida ósea que se produce a lo largo de la vida entre ambos sexos, la frecuencia de osteoporosis en individuos jóvenes es similar en ambos sexos. Sin embargo, en este grupo de población el desarrollo de osteoporosis suele asociarse a causas secundarias; de hecho, se ha descrito que alrededor del 50% de los individuos jóvenes con osteoporosis, tanto hombres como mujeres, presentan enfermedades o fármacos relacionados con su desarrollo, siendo el tratamiento prolongado con glucocorticoides una de las causas más frecuentes. Existen otros procesos que también han sido implicados en su desarrollo y que varían según el sexo del individuo. Por otro lado, la osteoporosis idiopática es otra causa frecuente de disminución de la masa ósea en estos pacientes, en donde la historia familiar de osteoporosis y la presencia de hipercalciuria son hallazgos habituales. Por esto, la valoración de estos pacientes precisa de un estudio minucioso para descartar causas secundarias de osteoporosis. Aunque existen pocos estudios sobre el tratamiento de este proceso en este grupo de población, son aconsejables una serie de normas básicas que incluyan ejercicio físico, ingesta adecuada de calcio y vitamina D, y evitar el consumo de tabaco y alcohol. El tratamiento farmacológico dependerá de la etiología de la osteoporosis y del sexo del paciente. Debe recordarse que la mayoría de las mujeres jóvenes se encuentran en edad fértil, por lo que el tratamiento farmacológico en este grupo de población siempre deberá valorarse con cautela.

Palabras clave:
Osteoporosis
Joven
Fracturas
Osteoporosis premenopáusica
Osteopenia
Full text is only aviable in PDF
References
[1.]
E. Seeman.
Osteoporosis in men: epidemiology, pathophysiology, and treatment possibilities.
Am J Med, 95 (1993), pp. 22S-28S
[2.]
P.J. Kelly, L. Twomey, P.N. Sambrook, J.A. Eisman.
Sex differences in peak adult bone mineral density.
J Bone Miner Res, 5 (1990), pp. 1169-1175
[3.]
E. Seeman.
Advances in the study of osteoporosis in men.
Osteoporosis: diagnosis and management, pp. 211-232
[4.]
J.A. Kanis.
Diagnosis of osteoporosis and assessment of fracture risk.
Lancet, 359 (2002), pp. 1929-1936
[5.]
M. Díaz Curiel, J.J. García, J.L. Carrasco, J. Honorato, R. Pérez Cano, A. Rapado, et al.
Prevalencia de osteoporosis determinada por densitometría en la población femenina española.
Med Clin (Barc), 116 (2001), pp. 86-88
[6.]
M. Díaz Curiel.
Prevalencia de la osteoporosis densitomérica en la población española.
Nuevas fronteras en el estudio de la densidad ósea en la población española, pp. 95-117
[7.]
J.A. Kanis, C.C. Glüer.
An update on the diagnosis and assessment of osteoporosis with densitometry.
Osteoporos Int, 11 (2000), pp. 192-202
[8.]
S. Khosla, E.G. Lufkin, S.F. Hodgson, L.A. Fitzpatrick, L.J. Melton.
Epidemiology and clinical features of osteoporosis in young individuals.
Bone, 15 (1994), pp. 551-555
[9.]
C. Cooper, E.J. Atkinson, W.M. O’Fallon, L.J. Melton.
Incidence of clinical diagnosed vertebral fractures: a population-based study in Rochester. Minnesota, 1985–1989.
J Bone Miner Res, 7 (1992), pp. 221-227
[10.]
C.A. Wigderowitz, T. Cunningham, D.I. Rowley, P.A. Mole, C.R. Paterson.
Peripheral bone mineral density in patients with distal radial fractures.
J Bone Joint Surg Br, 85 (2003), pp. 423-425
[11.]
A. Goulding, R. Cannan, S.M. Williams, E.J. Gold, R.W. Taylor, N.J. Lewis-Barned.
Bone mineral density in girls with forearm fractures.
J Bone Miner Res, 13 (1998), pp. 143-148
[12.]
C. Fiorano-Charlier, A. Ostertag, J.P. Aquino, M.C. De Vernejoul, C. Baudoin.
Reduced bone mineral density in postmenopausal women self-reporting premenopausal wrist fractures.
Bone, 31 (2002), pp. 102-106
[13.]
P. Kannus, H. Haapasalo, M. Sankelo, H. Sievanen, M. Pasanen, A. Heinonen, et al.
Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players.
Ann Intern Med, 123 (1995), pp. 27-31
[14.]
D.A. Bailey, H.A. McKay, R.L. Mirwald, P.R.E. Crocker, R.A. Faulkner.
A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan Bone Mineral Accrual Study.
J Bone Miner Res, 14 (1999), pp. 1672-1679
[15.]
S. Bass, G. Pearce, M. Bradney, E. Hendrich, P.D. Delmas, A. Harding, et al.
Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepuberal and retired female gymnasts.
J Bone Miner Res, 13 (1998), pp. 500-507
[16.]
M. Nilsson, C. Ohlsson, D. Mellström, M. Lorentzon.
Previous sport activity during childhood and adolescence is associated with increased cortical bone size in young adult men.
J Bone Miner Res, 24 (2009), pp. 125-133
[17.]
B.L. Riggs, H.W. Wahner, W.L. Dunn, R.B. Mazzes, K.P. Offord, L.J. Melton.
Differential changes in bone mineral density of the appendicular and axial skeleton with aging.
J Clin Invest, 67 (1981), pp. 328-335
[18.]
R. Recker, J. Lappe, K. Davies, R. Heaney.
Characterization of perimenopausal bone loss: a prospective study.
J Bone Miner Res, 15 (2000), pp. 1965-1973
[19.]
M.R. Sowers, G.A. Greedale, I. Bondarenko, J.S. Finkelstein, J.A. Cauley, R.M. Neer, et al.
Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN.
Osteoporos Int, 14 (2003), pp. 191-197
[20.]
A. Khan.
Premenopausal women and low bone density.
Can Fam Physician, 52 (2006), pp. 743-747
[21.]
M. Blum, S.S. Harris, A. Must, S.M. Phillips, W.M. Rand, B. Dawson-Hughes.
Weight and body mass index at menarche are associated with premenopausal bone mass.
Osteoporos Int, 12 (2001), pp. 588-594
[22.]
G.A. Hawker, S.A. Jamal, R. Ridout, C. Chase.
A clinical prediction rule to identify premenopausal women with low bone mass.
Osteoporos Int, 13 (2002), pp. 400-406
[23.]
T. Chevalley, J.P. Bonjour, S. Ferreri, R. Rizzoli.
Deleterious effect of late menarche on distal tibia microstructure in healthy 20-year-old and premenopausal middleaged women.
J Bone Miner Res, 24 (2009), pp. 144-152
[24.]
J.P. Sabatier, G. Guaydier-Souquières, D. Laroche, A. Benmalek, L. Fournier, F. Guillon-Metz, et al.
Bone mineral acquisition during adolescence and early adulthood: a study in 574 healthy females 10–24 years of age.
Osteoporos Int, 6 (1996), pp. 141-148
[25.]
C.J. Hernández, G.S. Beupré, D.R. Carter.
A theorical analysis of the relative influences of peack BMD, age-related bone loss and menopause on the development of osteoporosis.
Osteoporos Int, 14 (2003), pp. 843-847
[26.]
P. Peris, N. Guañabens, M.J. Martínez de Osaba, A. Monegal, L. Álvarez, F. Pons, et al.
Clinical characteristics and etiologic factors of premenopausal osteoporosis in a group of Spanish women.
Semin Arthritis Rheum, 32 (2002), pp. 64-70
[27.]
NIH Consensus Development Panel.
Osteoporosis prevention, diagnosis, and therapy.
JAMA, 285 (2001), pp. 785-795
[28.]
T.P. Van Staa, H.G.M. Leufkens, C. Cooper.
The epidemiology of corticosteroidinduced osteoporosis: a meta-analysis.
Osteoporos Int, 13 (2002), pp. 777-787
[29.]
F. Pons, P. Peris, N. Guañabens, J. Font, M. Huguet, G. Espinosa, et al.
The effect of lupus erythematosus and long-term steroid therapy on bone mass in premenopausal women.
Br J Rheumatol, 34 (1995), pp. 742-746
[30.]
L. Sinigaglia, M. Varenna, L. Binelli, F. Zucchi, D. Ghiringhella, M. Gallazzi.
Determinants of bone mass in systemic lupus erythematous: a cross sectional study on premenopausal women.
J Rheumatol, 26 (1999), pp. 1280-1284
[31.]
P. Peris, N. Guañabens, A. Monegal, X. Suris, L. Álvarez, M.J. Martínez de Osaba, et al.
Aetiology and presenting symptoms in male osteoporosis.
Br J Rheumatol, 34 (1995), pp. 936-941
[32.]
P. Peris, A. Martínez-Ferrer, A. Monegal, M.J. Martínez de Osaba, L. Álvarez, I. Ros, et al.
Aetiology and clinical characteristics of male osteoporosis. Have they changed in the last few years?.
Clin Exp Rheumatol, 26 (2008), pp. 582-588
[33.]
S. Ginspoon, E. Thomas, S. Pitts, E. Gross, D. Mickley, K. Miller, et al.
Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa.
Ann Intern Med, 133 (2000), pp. 790-794
[34.]
A.B. Berenson, C. Radecki-Breitkopf, J.J. Grady, V.I. Rickert, A. Thomas.
Effects of hormonal contraception on bone mineral density after 24 months of use.
Obstet Gynecol, 103 (2004), pp. 899-906
[35.]
A. Monegal, M. Navasa, N. Guañabens, P. Peris, F. Pons, M.J. Martínez de Osaba, et al.
Bone disease after liver transplantation: a long-term prospective study of bone mass changes, hormonal status and histomorphometric characteristics.
Osteoporos Int, 12 (2001), pp. 484-492
[36.]
M.F.X. Gnant, B. Mlinerisch, G. Luschin-Ebengreuth, S. Grampp, H. Kaessmann, M. Schmid, et al.
Zoledronic acid prevents cancer treatment-induced bone loss in premenopausal women receiving adjuvant endocrine therapy for hormoneresponsive breast cancer: a report from the Austrian Creast and Colorectal Cancer Study Group.
J Clin Oncol, 25 (2007), pp. 820-828
[37.]
C. Amiel, A. Ostertag, L. Slama, C. Baudoni, T.N. Guyen, E. Lajeunie, et al.
BMD is reduced in HIV-infected men irrespective of treatment.
J Bone Mineral Res, 19 (2004), pp. 402-409
[38.]
P. Peris, V. Ruiz-Esquide, A. Monegal, L. Álvarez, M.J. Martínez e Osaba, A. Martínez-Ferrer, et al.
Idiopathic osteoporosis in premenopausal women. Clinical characteristics and bone remodeling abnormalities.
Clin Exp Rheumatol, 26 (2008), pp. 986-991
[39.]
P. Jaeger, K. Lippuner, J.P. Casez, B. Hess, D. Ackermann, C. Hug.
Low bone mass in idiopathic renal stone formers: magnitude and significance.
J Bone Miner Res, 9 (1994), pp. 1525-1532
[40.]
F.L. Coe, M.J. Favus, T. Crockett, A.L. Strauss, J.H. Parks, A. Porat, et al.
Effects of lowcalcium diet on urine calcium excretion, parathyroid function and serum 1,25 OH2 D3 levels in patients with idiopathic hypercalciuria and in normal subjects.
Am J Med, 72 (1982), pp. 25-32
[41.]
K. Prank, S.J. Nowlan, H.M. Harms, M. Kloppstech, G. Brabant, R.D. Hesch, et al.
Time series prediction of plasma hormone concentration. Evidence for differences in predictability of parathryroid hormone secretion between osteoporotic patients and normal controls.
J Clin Invest, 95 (1995), pp. 2910-2919
[42.]
S. Ljunghall, A.G. Johansson, P. Burman, O. Kämpe, E. Lindh, F.A. Karlsson.
Low plasma levels of insulin-like growth factor 1 (IGF-1) in male patients with idiopathic osteoporosis.
J Intern Med, 232 (1992), pp. 59-64
[43.]
P. Gillberg, A.G. Johansson, S. Ljunghall.
Decrease estradiol levels and free androgen index and elevated sex hormone-binding globulin levels in male idiopathic osteoporosis.
Calcif Tissue Int, 46 (1999), pp. 209-213
[44.]
I. Braidman, C. Baris, L. Wood, P. Baird, P.L. Selby, A.J. Freemont, et al.
Preliminary evidence for impaired estrogen receptor-alpha protein expression in osteoblasts and osteocytes from men with idiophatic osteoporosis.
[45.]
R. Pacifici, L. Rifas, S. Teitelbaum, E. Slatopolsky, R. McCracken, M. Bergfeld, et al.
Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis.
Proc Natl Acad Sci, 84 (1987), pp. 4616-4620
[46.]
P.J. Marie, N.C. De Vernejoul, D. Connes, M. Hott.
Decreased DNA syntesis by cultured osteoblastic cells in eugonadal osteoporotic men with defective bone formation.
J Clin Invest, 88 (1991), pp. 1167-1172
[47.]
M.E. Danielson, J.A. Caulay, C.E. Baker, A.B. Newman, J.S. Dorman, J.D. Towers, et al.
Familiar resemblance of bone mineral density (BMD) and calcaneal ultrasound attenuation: the BMD in mothers and daughters study.
J Bone Miner Res, 14 (1999), pp. 102-110
[48.]
M.E. Cohen-Solal, C. Baudoin, M. Omouri, D. Kuntz, M.C. De Vernejoul.
Bone mass in middle-aged osteoporotic men and their relatives: Familial effect.
J Bone Miner Res, 13 (1998), pp. 1909-1914
[49.]
S.F. Evans, M.W. Davie.
Vertebral fractures and bone mineral density in idiopathic, secondary and corticosteroid associated osteoporosis in men.
Ann Rheum Dis, 59 (2000), pp. 269-275
[50.]
World Health Organization Study Group: osteoporosis.
Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO Technical report series 843.
WHO, (1994),
[51.]
Official positions of the International Society for Clinical Densitometry: updated [accessed 2/1/2009]. Available from: http://WWW.iscd,org/visitors/positions/official.cfmwww.iscd,org/visitors/positions/official.cfm
[52.]
K. Uusi-Rasi, H. Sievänen, M. Pasanen, P. Oja, I. Vuori.
Association of physical activity and calcium intake with the maintenance of bone mass in premenopausal women.
Osteoporos Int, 13 (2002), pp. 211-217
[53.]
P. Peris, A. Monegal, M.A. Martínez, C. Moll, F. Pons, N. Guañabens.
Bone mineral density evolution in young premenopausal women with idiopathic osteoporosis.
Clin Rheumatol, 26 (2007), pp. 958-961
[54.]
P. Peris, A. Parés, N. Guañabens, L. Del Río, F. Pons, M.J. Martínez de Osaba, et al.
Bone mass improves in alcoholics after 2 years of abstinence.
J Bone Miner Res, 9 (1994), pp. 1607-1612
[55.]
E. Seeman, G.I. Szmukler, C. Formica, C. Tslamandris, R. Mestrovic.
Osteoporosis in anorexia nervosa: the influence of peak bone density, bone loss, oral contraceptive use, and exercise.
J Bone Miner Res, 7 (1992), pp. 1467-1474
[56.]
C.M. Gordon, E. Grace, S.J. Emans, H.A. Feldman, E. Goodman, K.A. Becker, et al.
Effects of oral dehidroepiandrosterone on bone density in young women with anorexia nervosa: a randomized trial.
J Clin Endocrinol Metab, 87 (2002), pp. 4935-4941
[57.]
P.S. Mehler, T.D. MacKenzie.
Treatment of osteopenia and osteoporosis in anorexia nervosa: a systematic review of the literature.
Int J Eat Disord, 42 (2009), pp. 195-201
[58.]
K.K. Miller, E.E. Lee, E.A. Lawson, M. Misra, J. Minihan, S.K. Grinspoon, et al.
Determinants of skeletal loss and recovery in anorexia nervosa.
J Clin Endocrinol Metab, 91 (2006), pp. 2931-2937
[59.]
S. Palomba, F. Orio, M. Morelli, T. Russo, A. Pellicano, C. Nappi, et al.
Raloxifene administration in women treated with gonadotropin-releasing hormone agonist for uterine leiomyomas: Effects on bone metabolism.
J Clin Endocrinol Metab, 87 (2002), pp. 4476-4481
[60.]
J.S. Finkelstein, A. Klibanski, E.H. Schaefer, M.D. Hornstein, I. Schiff, R.M. Neer.
Parathyroid hormone for prevention of bone loss induced by estrogen deficiency.
N Eng J Med, 331 (1994), pp. 1618-1623
[61.]
S. Bertelloni, G.I. Baroncelli, R. Battini, G. Perri, G. Saggese.
Short-term effect of testosterone treatment on reduced bone density in boys with constitutional delay of puberty.
J Bone Miner Res, 10 (1995), pp. 1488-1495
[62.]
F.H.W. Wong, K.K. Pun, C. Wang.
Loss of bone mass in patients with Klinefelter's syndrome despite sufficient testosterone replacement.
Osteoporos Int, 3 (1993), pp. 3-7
[63.]
H.M. Behre, S. Kliesch, E. Leifke, T.M. Link, E. Nieschlag.
Long-term effect of testosterone therapy on bone mineral density in hypogonadal men.
J Clin Endocrinol Metab, 82 (1997), pp. 2386-2390
[64.]
J. González Macías, N. Guañabens Gay, C. Gómez Alonso, L. Del Río Barquero, M. Muñoz Torres, M. Delgado, et al.
Guías de práctica clínica en la osteoporosis posmenopáusica, glucocorticoidea y del varón. Sociedad Española de Investigación Ósea y del Metabolismo Mineral.
Rev Clin Esp, 208 (2008), pp. 1-24
[65.]
E. Orwoll, M. Ettinger, S. Weiss, P. Miller, D. Kendler, J. Graham, et al.
Alendronate for the treatment of osteoporosis in men.
N Engl J Med, 343 (2000), pp. 604-610
[66.]
J.J. Stepan, M. Lachman, J. Zverina, V. Pacovsky, D. Baylink.
Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling.
J Clin Endocrinol Metab, 69 (1989), pp. 523-527
[67.]
G.C. Curhan, W.C. Willett, E.B. Rimm, M.J. Stampfer.
A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones.
N Eng J Med, 328 (1993), pp. 833-838
[68.]
L. Borghi, T. Schianchi, T. Meschi, A. Guerra, F. Allegri, U. Maggiore, et al.
Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria.
N Engl J Med, 346 (2002), pp. 77-84
[69.]
J. Lemman.
Pathogenesis of idiopathic hypercalciuria and nephrolithiasis.
Disorders of bone and mineral metabolism, pp. 685-706
[70.]
G.M. Preminger, C.Y.C. Pak.
Eventual attenuation of hypocalciuric response to hydrochlorothiazide in absorptive hypercalciuria.
J Urology, 137 (1987), pp. 1104-1109
[71.]
J.S. Adams, C.F. Song, V. Kantorovich.
Rapid recovery of bone mass in hypercalciuric, osteoporotic men treated with hydrochlorothiazide.
Ann Intern Med, 130 (1999), pp. 658-660
[72.]
P. Peris, N. Guañabens, A. Monegal, L. Álvarez, F. Pons, M.J. Martínez de Osaba, et al.
Osteoporosis asociada a hipercalciuria. Efecto del tratamiento con hidroclorotiazidas o etidronato cíclico.
Rev Esp Reumatol, 28 (2001), pp. 408-412
[73.]
R.D. Wasnich, J. Davis, P. Ross, J. Vogel.
Effect of thiazide on rates of bone mineral loss: a longitudinal study.
BMJ, 301 (1990), pp. 1303-1305
[74.]
A.Z. La Croix, J. Wienpahl, L.R. White, R.B. Wallance, P.A. Scherr, L.K. George, et al.
Thiazide diuretic agents and the incidence of hip fracture.
N Engl J Med, 322 (1990), pp. 286-290
[75.]
N.R. Biermasz, N.A.T. Hamdy, A.M.P. Pereira, A. Romijn, F. Roelfsema.
Long-term skeletal effects of recombinant human growth hormone (rhGH) alone and rhGH combined with alendronate in GH-deficient adults: a seven-year follow-up study.
Clin Endocrinol, 60 (2004), pp. 568-575
[76.]
G. Amato, C. Carella, S. Fazio, G. La Montagna, A. Cittadini, D. Sabatini, et al.
Body composition, bone metabolism, and heart structure and function in growth hormone (GH)-deficient adults before and after GH replacement therapy at low doses.
J Clin Endocrinol Metab, 77 (1993), pp. 1671-1676
[77.]
R.C. Cuneo, S. Judd, J.D. Wallace, D. Perry-Knee, H. Burger, S. Lim-Tio, et al.
The Australian multicenter trial of growth hormone (GH) treatment in GH-deficient adults.
J Clin Endocrinol Metab, 83 (1998), pp. 107-116
[78.]
G. Johannsson, R. Bjarnason, M. Bramnert, L.M.S. Carlsson, M. Degerblad, P. Manhem, et al.
The individual responsiveness to growth hormone (GH) treatment in GHdeficient adults is dependent on the level of GH-binding protein, body mass index, age, and gender.
J Clin Endocrinol Metab, 81 (1996), pp. 1575-1581
[79.]
A.D.R. Hermus, A.G. Smals, L.M. Swinkels, D.A. Huysmans, G.F. Pieters, F. Sweep, et al.
Bone mineral density and bone turnover before and after surgical cure of Cushing's syndrome.
J Clin Endocrinol Metab, 80 (1995), pp. 2859-2865
[80.]
A. Siddiqi, J.M. Burring, K. Noonana, I. James, D.F. Wood, C.P. Price, et al.
A longitudinal study of markers of bone turnover in Grave's disease and their value in predicting bone mineral density.
J Clin Endocrinol Metab, 82 (1997), pp. 753-759
[81.]
S.J. Silverberg, E. Shane, T.P. Jacobs, E. Siris, J.P. Bilezikian.
A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery.
N Engl J Med, 341 (1999), pp. 1249-1255
[82.]
A.J. Phillips, S.J. Ostlere, R. Smith.
Pregnancy-associated osteoporosis: Does the skeleton recover?.
Osteoporos Int, 11 (2000), pp. 449-454
[83.]
P. Peris, N. Guañabens, A. Monegal, F. Pons, M.J. Martínez de Osaba, I. Ros, et al.
Pregnancy associated osteoporosis: The familial effect.
Clin Exp Rheumatol, 20 (2002), pp. 697-700
[84.]
W. Khovidhunkit, S. Epstein.
Osteopororsis in pregnancy.
Osteoporos Int, 6 (1996), pp. 345-354
[85.]
J.D. Adachi, W.G. Bensen, J. Brown, D. Hanley, A. Hodsman, R. Josser, et al.
Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis.
N Engl J Med, 337 (1997), pp. 382-387
[86.]
J.D. Adachi, K.G. Saag, P.D. Delmas, U.A. Liberman, R. Emkey, E. Seeman, et al.
Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids.
[87.]
S. Wallach, S. Cohen, D.M. Reid, R.A. Hughes, D.J. Hosking, R.F. Laan, et al.
Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy.
Calcif Tissue Int, 67 (2000), pp. 277-285
[88.]
American College of Rheumatology.
Recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis.
[89.]
K.G. Saag, E. Shane, S. Boonen, F. Marín, D.W. Donley, K.A. Taylor, et al.
Teriparatide or alendronate in glucocorticoid-induced osteoporosis.
N Engl J Med, 357 (2007), pp. 2028-2039
[90.]
M. Luengo, F. Pons, M.J. Martínez de Osaba, C. Picado.
Prevention of further bone mass loss by nasal calcitonin in patients on long term glucocorticoid therapy for asthma: a two year follow up study.
Thorax, 49 (1994), pp. 1099-1102
[91.]
D.L. Hershman, D.J. McMahon, K.D. Crew, S. Cremens, D. Irani, G. Cucchiara, et al.
Zoledronic acid prevents bone loss in premenopausal women undergoing adjuvant chemotherapy for early-stage breast cancer.
J Clin Oncol, 26 (2008), pp. 4739-4745
[92.]
F.H. Glorieux, N.J. Bishop, H. Plotkin, G. Chabot, G. Lanque, R. Travers.
Cyclic administration of pamidronate in children with severe osteogenesis imperfecta.
N Engl J Med, 339 (1998), pp. 947-952
[93.]
L.A. Di Meglio, M. Peacoc.
Two-year clinical trial of oral alendronate versus intravenous pamidronate in children with osteogenesis imperfecta.
J Bone Miner Res, 21 (2006), pp. 132-140
[94.]
S. Adami, D. Gatti, F. Colapietro, E. Fracassi, V. Braga, M. Rossini, et al.
Intravenous neridronate in adults with osteogenesis imperfecta.
J Bone Miner Res, 18 (2003), pp. 126-130
[95.]
S.E. Papapoulos, S.C.L.M. Cremers.
Prolonged bisphosphonate release after treatment in children.
N Engl J Med, 356 (2007), pp. 1075-1076
[96.]
C.F.J. Munns, F. Rauch, L. Zeitlin, F. Fassier, F.H. Glorieux.
Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate.
J Bone Miner Res, 19 (2004), pp. 1779-1786
[97.]
J.C. Marini.
Do bisphosphonates make children's bones better or brittle.
N Engl J Med, 349 (2003), pp. 423-426
[98.]
S. Adami, N. Zamberlan.
Adverse effects of bisphosphonates. A comparative review.
Drug Saf, 14 (1996), pp. 158-170
[99.]
J.P. Brown, R.G. Josse.
2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada.
CMAJ, 167 (2002), pp. S1-S34
[100.]
I. Arnala, J. Saastamoinene, E.M. Alhava.
Salmon calcitonin in the prevention of bone loss at perimenopause.
Bone, 18 (1996), pp. 629-632
[101.]
P. Peris.
Toxicidad de la teriparatida.
Rev Esp Reumatol, 3 (2004), pp. 19-23
Copyright © 2010. Sociedad Española de Reumatología and Colegio Mexicano de Reumatología
Idiomas
Reumatología Clínica (English Edition)

Subscribe to our newsletter

Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?